Exercise 22

Find an equation of the tangent line to the curve at the given point.

$$
y=e^{x} \cos x, \quad(0,1)
$$

Solution

With one point known on the line, all that we need to know is its slope. This is found by calculating the derivative of the given curve

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(e^{x} \cos x\right) \\
& =\left[\frac{d}{d x}\left(e^{x}\right)\right] \cos x+e^{x}\left[\frac{d}{d x}(\cos x)\right] \\
& =\left(e^{x}\right) \cos x+e^{x}(-\sin x) \\
& =e^{x}(\cos x-\sin x)
\end{aligned}
$$

and evaluating it at $x=0$.

$$
y^{\prime}(0)=e^{0}(\cos 0-\sin 0)=1
$$

Therefore, the equation of the tangent line at $(0,1)$ is

$$
y-1=1(x-0)
$$

The tangent line and the given curve are shown below.

